4-7 Transforming Formulas

Objective: To transform a formula.

Example 1 Solve the formula
$$F = ma$$
 for m . State the restrictions, if any, for the formula

obtained to be meaningful.

Solution
$$F = ma$$
 To get m alone on one side, divide both sides by a .

 $\frac{F}{a} = m$, $a \neq 0$ The denominator cannot be 0.

restrictions, if any, for the formula obtained to be meaningful.

1.
$$C = \pi d$$
 for $d = \frac{C}{\pi}$ 2. $F = ma$

2.
$$F = ma$$
 for $a = \frac{F}{m}$; $m \neq 0$

3.
$$I = prt \text{ for } t \ t = \frac{I}{pr}; \ p \neq 0, \ r \neq 0$$
4. $V = Bh \text{ for } h \ h = \frac{V}{B}; \ B \neq 0$
5. $d = rt \text{ for } t \ t = \frac{d}{r}; \ r \neq 0$
6. $s = gt^2 \text{ for } g \ g = \frac{s}{t^2}; \ t \neq 0$

Example 2 The formula
$$A = \frac{1}{2}h(a+b)$$
 gives the area of a trapezoid with bases a units

and b units and with height h units. Use this formula to solve for the variable b in terms of A, h, and a. State the restrictions, if any, for the formula obtained to be meaningful.

Solution
$$A = \frac{1}{2}h(a+b)$$
To get clear of fractions, multiply both sides by 2.

$$2A = h(a + b)$$
 Divide both sides by h .
 $\frac{2A}{a} = a + b$ Subtract a from both sides.

$$\frac{2A}{h} - a = b, h \neq 0$$
 The denominator cannot be 0.

Solve the given formula for the indicated variable. State the

I to be meaningful.
8.
$$b = 2b + y$$
 for $y y = -b$

7.
$$A = \frac{1}{2}bh \text{ for } h \text{ } h = \frac{2A}{b}; b \neq 0$$
8. $b = 2b + y \text{ for } y \text{ } y = -b$

$$r = \frac{A - P}{Pt}; P \neq 0, t \neq 0$$

9.
$$A = \frac{1}{2}h(b+c)$$
 for $h = \frac{2A}{b+c}$; $b \neq -c10$. $A = P + Prt$ for $r = \frac{A-P}{Pt}$; $P \neq 0$, $t \neq 0$

11.
$$a = 2(l + w)$$
 for $l = \frac{a - 2w}{2}$ 12. $C = \frac{5}{9} (F - 32)$ for $F = \frac{9C + 160}{5}$

Solve the formula $C = \frac{mv^2}{r}$ for r. State the restrictions, if any, for the formula

obtained to be meaningful.

Solution
$$C = \frac{mv^2}{r}$$

4-7 Transforming Formulas (continued)

 $C = \frac{mv^2}{}$ To get r out of the denominator, multiply both sides by r. To get r alone on one side, divide both sides by C. $Cr = mv^2$ $r=\frac{mv^2}{C}, C\neq 0$ The denominator cannot be 0.

restrictions, if any, for the formula obtained to be meaningful.
13.
$$s = \frac{v}{n}$$
 for $v = rs$ 14. $d = \frac{m}{n}$ for $m = dv$

13.
$$s = \frac{v}{r}$$
 for $v = rs$

15.
$$C = \frac{mv^2}{r}$$
 for $m \frac{Cr}{v^2} = m$, $v \neq 0$ 16. $2ax + 1 = ax + 5$ for $x = \frac{4}{a}$, $a \neq 0$

17. $a = \frac{v - u}{t}$ for u = v - at, $t \neq 0$ 18. $v^2 = u^2 + 2as$ for $a = \frac{v^2 - u^2}{2s}$, $s \neq 0$

19.
$$S = \frac{n}{2}(a+1)$$
 for $a = \frac{2S-n}{n}$, $n \neq 0$ 20. $m = \frac{x+y+z}{3}$ for $x = 3m - y - z$

21. l = a + (n-1)d for $d = \frac{l-a}{n-1}$, $n \ne 1$ 22. $A = \frac{a+b+c+d}{4}$ for b

$$b = 4A - a - c - d$$
23. $3by - 2 = 2by + 1$ for $b = \frac{3}{y}$, $y \ne 0$ 24. $3aw + 1 = aw - 7$ for $a = -\frac{4}{w}$, $w \ne 0$

25.
$$ax + b = c$$
 for b $b = c - ax$ 26. $D = \frac{a}{2}(2t - 1)$ for a $a = \frac{2D}{2t - 1}$, $t \neq \frac{1}{2}$

27.
$$am - bm = c$$
 for $a = \frac{bm + c}{m}$, $m \neq 0$ 28. $q = 1 + \frac{P}{100}$ for $P = 100$ $q = 100$

Mixed Review Exercises

Simplify.
1.
$$(y-4)(y+2)$$
 y^2-2y-8
2. $(2n-3)(3n-4)$ $6n^2-17n+12$
3. $a[3a-2(4+a)]$ a^2-8a
4. $xy(x-2y)$ x^2y-2xy^2

3.
$$a[3a - 2(4 + a)]$$
 $a^2 - 8a$ 4. $xy(x - 2y)$ $x^2y - 2xy^2$ 5. $3x(x^2 - 2x + 3)$ $3x^3 - 6x^2 + 9x$ 6. $(-4x^2)^3 - 64x^6$

7.
$$n^2 \cdot n^3 \cdot n^4 \ n^9$$
8. $(2a^2)^3 \cdot (3a^3b^2) \ 24a^9b^2$
9. $(x + 6)(x - 5) \ x^2 + x - 30$
10. $(a + 2b)ab \ a^2b + 2ab^2$

11.
$$(4m + 5)(8m + 7)$$
 32 m^2 + 68 m + 35 12. $2y^2(y^3 + 2y - 1)$ 2 y^5 + 4 y^3 - 2 y^2

Study Guide, ALGEBRA, Structure and Method, Book 1

Copyright © by Houghton Mifflin Company. All rights reserved.